Abstract
ObjectivesThe present study aimed to evaluate the trueness and precision of monolithic zirconia crowns (MZCs) fabricated by 3D printing and milling techniques. MethodsA premolar crown was designed after scanning a prepared typodont. Twenty MZCs were fabricated using milling and 3D-printing techniques (n = 10). All the specimens were scanned with an industrial scanner, and the scanned data were analyzed using 3D measurement software to evaluate the trueness and precision of each group. Root mean square (RMS) deviations were measured and statistically analyzed (One-way ANOVA, Tukey's, p ≤ 0.05). ResultsThe trueness of the printed MZC group (140 ± 14 μm) showed a significantly higher RMS value compared to the milled MZCs (96 ± 27 μm,p < 0.001). At the same time, the precision of the milled MZCs (61 ± 17 μm) showed a significantly higher RMS value compared to that of the printed MZCs (31 ± 5 μm,p < 0.001). ConclusionsThe Fabrication techniques had a significant impact on the accuracy of the MZCs. Milled MZCs showed the highest trueness, while printed MZCs showed the highest precision. All the results were within the clinically acceptable error values. Clinical SignificanceAlthough the trueness of the milled MZCs is higher, the manufacturing accuracy of the 3D-printed MZCs showed clinically acceptable results in terms of trueness and precision. However, additional clinical studies are recommended. Furthermore, the volumetric changes of the material should be considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.