Abstract

Mechanical excavation or blasting generates stress waves that rapidly dissipate in the surrounding high-geostress rock, causing microdynamic disturbances. These disturbances trigger microcracks within the damaged rock, even inducing engineering disasters. However, the fracture behaviors and mechanisms of rockmass subjected to excavation disturbances under three-dimensional geostress remains unclear. Therefore, this study proposed a true triaxial static–dynamic combined loading method to capture the entire process of tunnel excavation damage and the continuous fracturing induced by microdynamic disturbances. True triaxial static–dynamic combined tests and numerical simulations using PFC3D-GBM were employed systematically to analyze the influence of principal stresses σ1, σ2, and σ3 on the disturbances mechanical behaviors of the gabbro. The disturbance failure under true triaxial stress indicated a three-stage pattern of deformation: deceleration, constant velocity, and acceleration. With increased σ1 or decreasing σ2 and σ3, the disturbance bearing capacity of the gabbro significantly decreased. Moreover, an increase in σ1 and σ3 corresponded to an increased proportion of intergranular shear cracks, whereas an increase in σ2 resulted in a notable increase in intragranular tensile cracks. Small-magnitude events tended to disperse during the deceleration and constant-velocity stages, whereas larger-magnitude events were concentrated during the acceleration stage. The AE parameter b-value initially increased and then decreased during disturbance fracture process. The excavation disturbance of the tunnel intensified the depth of the damage zone and the energy released, thereby increasing the risk of a catastrophic deep fracture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.