Abstract

In the semiconductor industry, virtual metrology (VM) is a cost-effective and efficient technique for monitoring the processes from one wafer to another. This technique is implemented by generating a predictive model that uses real-time data from equipment sensors in conjunction with measured wafer quality characteristics. Before establishing a prediction model for the VM system, appropriate selection of relevant input variables should be performed to maintain the efficiency of subsequent analyses considering the large dimensionality of the sensor data inputs. However, wafer production processes usually employ multiple sensors, which leads to cost escalations. Herein, we propose a variant of the sparse principal component analysis (PCA) called true sparse PCA (TSPCA). The proposed method uses a small number of input variables in the first few principal components. The main contribution of the proposed TSPCA is reducing the number of essential sensors. Our experimental results demonstrate that compared to the existing sparse PCA methods, the proposed approach can reduce the number of sensors required while explaining an approximately equivalent amount of variance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.