Abstract
Abstract Site fidelity plays an important role in increasing foraging efficiency, particularly when food resources are reliable. In insects, site fidelity has largely been studied in Hymenopteran species, which consistently return to their nest site after foraging bouts. In butterflies, evidence of foraging site fidelity is limited but may be present in species with specific foraging specialisations, such as Heliconius, which have a derived foraging behaviour centred around active pollen feeding. Unlike many Hymenoptera, Heliconius are neither eusocial nor nesting species, positioning them as a peculiar case where foraging site fidelity may occur in the absence of any central nest‐like structure. However, to date, existing studies do not consider low dispersal as an alternative to site fidelity. In this study, we use a mark–release–recapture experiment to test whether individuals of two Heliconius species exhibit true site fidelity. We further test this fidelity by measuring flight orientation during a translocation experiment, and by recapturing translocated butterflies to identify whether individuals return to their site of origin. We found that non‐translocated butterflies display extreme stability in site choice, and translocated butterflies consistently return to their site of origin, rapidly orientating towards their home site upon release. This suggests site fidelity in Heliconius is not solely explained by low dispersal, but is a response to the distribution and stability in ecological resources. We further note that the ability to return to home sites when artificially dispersed suggests a sophisticated ability to navigate to specific spatial goals. Our study provides insights into the ecological drivers of site fidelity, a novel example distinct from nest building or group living, and opens an avenue of new research on navigational mechanisms in insects. A free Plain Language Summary can be found within the Supporting Information of this article.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.