Abstract

This paper presents the validation of a novel approach for a true-random number generator (TRNG) based on a ring oscillator–physical unclonable function (RO-PUF) for FPGA devices. The proposal takes advantage of the different noise sources that affect the electronic implementation of the RO-PUF to extract the entropy required to guarantee its function as a TRNG, without anything more than minimal changes to the original design. The new RO-PUF/TRNG architecture has been incorporated within a hybrid HW/SW embedded system designed for devices from the Xilinx Zynq-7000 family. The degree of randomness of the generated bit streams was assessed using the NIST 800-22 statistical test suite, while the validation of the RO-PUF proposal as an entropy source was carried out by fulfilling the NIST 800-90b recommendation. The features of the hybrid system were exploited to carry out the evaluation and validation processes proposed by the NIST publications, online and on the same platform. To establish the optimal configuration to generate bit streams with the appropriate entropy level, a statistical study of the degree of randomness was performed for multiple TRNG approaches derived from the different implementation modes and configuration options available on the original RO-PUF design. The results show that the RO-PUF/TRNG design is suitable for secure cryptographic applications, doubling its functionality without compromising the resource–efficiency trade-off already achieved in the design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call