Abstract

Combining the advantages of reactive crystal facets and engineering defects is an encouraging way to address the inherent disadvantages of titanium dioxide (TiO2) nanocrystals. However, revealing the true photoreactivity origin for defective TiO2 with coexposed or predominant exposed anisotropic facets is still highly challenging. Here, the photoreactivity of TiO2 nanocrystals with respectively predominant exposed {001}, {101}, and {100} facets before and after Ti3+ doping under both ultraviolet and visible light was compared systematically. In detail, the photocatalytic H2 production for R-TiO2-001, R-TiO2-101, and R-TiO2-100 increased by a factor of 1.34, 2.65, and 3.39 under UV light and a factor of 8.90, 13.47, and 8.72 under visible light. By contrast, the photocatalytic degradation of methyl orange for R-TiO2-001, R-TiO2-101, and R-TiO2-100 increased by a factor of 3.18, 1.42, and 2.17 under UV light and a factor of 4.03, 2.85, and 1.58 under visible light, respectively. The true photocatalytic activity origin for the obtained photoreduction and photo-oxidation ability is attributed to the exposure of more active sites (under-coordinated 5-fold Ti atoms), the facilitated charge transfer among {001}, {101}, and {100} facets, and the Ti3+ energy state with variable doping levels to extend the visible light response. This work hopefully provides significant insights into the photoreactivity origin of defective TiO2 nanocrystals with anisotropic exposed facets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.