Abstract

A model enabling the determination of the intrinsic mechanical constitutive equations of uniaxially stretched polymers is presented. This model takes into account the cavitation-induced volume strain which can occur during the deformation of such materials. In particular, the true intrinsic axial stress and strain depends on the overall volume strain and a form factor depicting the evolution of the voids shape. Based on our model, the true intrinsic behaviour of high-density polyethylene (HDPE), polypropylene/ethylene-propylene rubber (PP/EPR), and polyethylene terephtalate (PET) was assessed in tension. Compared to the overall true behaviour, the intrinsic true behaviour of the materials did not exhibit anomalies at large strain levels with changing experimental parameters (strain rate and temperature), and can be accurately predicted by means of phenomenological constitutive equations as the one proposed by G’sell and Jonas (1979).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.