Abstract

Background: Dislocation after total hip arthroplasty is a common complication and partially based on impingement. Questions/purposes: (1) The purpose of this study was to investigate the angle between anterior and posterior impingement in current hip cup designs. (2) Furthermore, the aim was to design a model of an acetabular cup with sparing gaps that match to impact areas. Methods: The range of motion was simulated with Maple R8 software using standard parameters in hip arthroplasty. Afterwards, a preliminary model for an optimized acetabular cup was designed in order to avoid impingement and dislocation. Results: (1) Anterior and posterior areas of impingement were not opposite but twisted by an angle of 108.3°. (2) The two main trajectories of motion were identified and areas with corresponding reductions and elevations were appropriate modified. The improvement resulted in a “bidirectional total hip prosthesis” with a combination of a snapfit acetabular cup and a reduced cup profile. Conclusion: The improvements of the described hip prosthesis are based on a simulation and are most likely to prevent impingement and subsequent dislocation. In addition, simulation with standard implantation parameters resulted in a rotational asymmetric implant design. Clinical relevance: Our data provide evidence that conventional hip cup designs fail to prevent impingement due to (1) The incorrect assumption of diagonally arranged impingement areas and the diagonal arranged sparing gaps (2) The sparing gap design itself that technically is not reducing the rim of the cup but instead only has an elevated coverage relative to the center of motion.

Highlights

  • Dislocation remains a major complication after total hip replacement (THR) that may require challenging revision surgery [1]

  • The improvements of the described hip prosthesis are based on a simulation and are most likely to prevent impingement and subsequent dislocation

  • Clinical relevance: Our data provide evidence that conventional hip cup designs fail to prevent impingement due to (1) The incorrect assumption of diagonally arranged impingement areas and the diagonal arranged sparing gaps (2) The sparing gap design itself that technically is not reducing the rim of the cup but instead only has an elevated coverage relative to the center of motion

Read more

Summary

Introduction

Dislocation remains a major complication after total hip replacement (THR) that may require challenging revision surgery [1]. The incidence of dislocation after primary hip replacement is reported with a range between 0.4% and 7% [2,3,4,5,6]. Problems caused by dislocation after primary THR are frequently underestimated owing to the relative low incidence compared to the general long life cycle of primary implants. Impingement plays a crucial role for a dislocation after primary THR with almost one quarter of all revisions [7]. The head center will translate relative to the cup or liner since the neck acts as a lever at the moment of impact. Dislocation after total hip arthroplasty is a common complication and partially based on impingement. Questions/purposes: (1) The purpose of this study was to investigate the angle between anterior and posterior impingement in current hip cup designs. (2) the aim was to design a model of an acetabular cup with sparing gaps that match to impact areas

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.