Abstract

Abstract This work presents a thermal-mechanical finite element analysis (FEA) of a typical heavy-duty radial truck tire on both drum and roadway. The calculated footprint pressures, strain energy density, and steady-state temperature distribution are compared between two cases. In addition to structural and thermal simulation techniques for obtaining stress, strain, and temperature distributions in the tire key areas, several material analysis techniques are also used to characterize the tire rubber materials. Temperature, frequency, and strain scan tests are conducted to obtain the dynamic mechanical properties of the tire rubbers of interest. Furthermore, the changes of the materials’ dynamic mechanical properties with fatigue have been investigated by testing tire materials before and after drum endurance tests. It has been found that different parts show different changing trends in dynamical properties after endurance tests, which might indicate different failure mechanisms. Combining the materials’ characterization techniques and thermal-mechanical FEA, this paper attempts to evaluate the tire shoulder failure mechanism and predict the relative shoulder endurance of an 11.00R20 truck tire.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.