Abstract

Fate decisions in neural progenitor cells are orchestrated via multiple pathways, and the role of histone acetylation in these decisions has been ascribed to a general function promoting gene activation. Here, we show that the histone acetyltransferase (HAT) cofactor transformation/transcription domain-associated protein (Trrap) specifically regulates activation of cell-cycle genes, thereby integrating discrete cell-intrinsic programs of cell-cycle progression and epigenetic regulation of gene transcription in order to control neurogenesis. Deletion of Trrap impairs recruitment of HATs and transcriptional machinery specifically to E2F cell-cycle target genes, disruptingtheir transcription with consequent cell-cycle lengthening specifically within cortical apical neural progenitors (APs). Consistently, Trrap conditional mutants exhibit microcephaly because of premature differentiation of APs into intermediate basal progenitors and neurons, and overexpressing cell-cycle regulators invivo can rescue these premature differentiation defects. These results demonstrate an essential and highly specific role for Trrap-mediated histone regulation in controlling cell-cycle progression and neurogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.