Abstract
Increased activity and excitability (sensitisation) of a series of molecules including the transient receptor potential ion channel, vanilloid subfamily, member 1 (TRPV1) in pain-sensing (nociceptive) primary sensory neurons are pivotal for developing pathological pain experiences in tissue injuries. TRPV1 sensitisation is induced and maintained by two major mechanisms; post-translational and transcriptional changes in TRPV1 induced by inflammatory mediators produced and accumulated in injured tissues, and TRPV1 activation-induced feed-forward signalling. The latter mechanism includes synthesis of TRPV1 agonists within minutes, and upregulation of various receptors functionally linked to TRPV1 within a few hours, in nociceptive primary sensory neurons. Here, we report that a novel mechanism, which contributes to TRPV1 activation-induced TRPV1-sensitisation within ~ 30 min in at least ~ 30% of TRPV1-expressing cultured murine primary sensory neurons, is mediated through upregulation in cyclooxygenase 2 (COX2) expression and increased synthesis of a series of COX2 products. These findings highlight the importance of feed-forward signalling in sensitisation, and the value of inhibiting COX2 activity to control pain, in nociceptive primary sensory neurons in tissue injuries.
Highlights
Increased activity and excitability of a series of molecules including the transient receptor potential ion channel, vanilloid subfamily, member 1 (TRPV1) in pain-sensing primary sensory neurons are pivotal for developing pathological pain experiences in tissue injuries
This is the first report which shows that increased ptgs[2] and cyclooxygenase 2 (COX2) expression and synthesis of a series of COX2 products are triggered by TRPV1 activation and underlie the development of sensitisation of TRPV1 in ~ 30 min after the first TRPV1 activation
To rat cultured primary sensory neurons[24], murine cultured primary sensory neurons exhibit this type of sensitisation, though there are some differences between the two species
Summary
Increased activity and excitability (sensitisation) of a series of molecules including the transient receptor potential ion channel, vanilloid subfamily, member 1 (TRPV1) in pain-sensing (nociceptive) primary sensory neurons are pivotal for developing pathological pain experiences in tissue injuries. TRPV1 sensitisation is induced and maintained by two major mechanisms; post-translational and transcriptional changes in TRPV1 induced by inflammatory mediators produced and accumulated in injured tissues, and TRPV1 activation-induced feed-forward signalling The latter mechanism includes synthesis of TRPV1 agonists within minutes, and upregulation of various receptors functionally linked to TRPV1 within a few hours, in nociceptive primary sensory neurons. We report that a novel mechanism, which contributes to TRPV1 activation-induced TRPV1-sensitisation within ~ 30 min in at least ~ 30% of TRPV1-expressing cultured murine primary sensory neurons, is mediated through upregulation in cyclooxygenase 2 (COX2) expression and increased synthesis of a series of COX2 products These findings highlight the importance of feed-forward signalling in sensitisation, and the value of inhibiting COX2 activity to control pain, in nociceptive primary sensory neurons in tissue injuries. We show that this third type of feed-forward TRPV1 sensitisation depends on upregulation of cyclooxygenase 2 (COX2) and the subsequent increase in the synthesis of a series of PGs
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.