Abstract
Transient receptor potential melastatin 7 (TRPM7), a non-selective cation channel, was significantly upregulated in the blood of patients with sepsis. This study focuses on the preliminary exploration of the probable regulatory mechanism of TRPM7 in sepsis-induced myocardial injury (SIMI).HL-1 cardiac muscle cell line was treated with lipopolysaccharide (LPS) to mimic SIMI in vitro, and TRPM7 level was assessed. The impacts of TRPM7 knockdown on cellular inflammation response, oxidative stress, apoptosis, endoplasmic reticulum (ER) stress, and ferroptosis were identified. In order to explore the mechanism, ER stress agonist tunicamycin (TM) or ferroptosis inducer erastin was applied to treat HL-1 cells. The influences of TM and erastin on the aforementioned aspects were evaluated.TRPM7 was elevated in response to LPS stimulation, and its knockdown reduced the secretion of inflammatory factors and oxidative stress degree. Moreover, TRPM7 knockdown significantly suppressed cell apoptosis, ER stress, and ferroptosis. TM and erastin reversed the functions of TRPM7 knockdown, indicating ER stress and ferroptosis mediated in the regulation of TRPM7.This research proposes the possibility of TRPM7 as a marker or target for SIMI, and provides theoretical support for follow-up research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.