Abstract

It has been documented that transient receptor potential melastatin 7 (TRPM7) plays a pivotal role in the development of multiple cancers. However, the role of TRPM7 in human colorectal cancer (CRC) is poorly understood. Therefore, the aim of this study was to investigate the expression and significance of TRPM7 in CRC. In this study, TRPM7 expression was first investigated in Gene Expression Omnibus (GEO), and then validated it with the data from our medical center. CCK-8, colony survival, transwell, and flow cytometry assays were employed to evaluate the effects of TRPM7 knockdown on the CRC cell proliferation, migration, and invasion, as well as cell cycle and apoptosis. We observed markedly increased TRPM7 expression in CRC tissues. CRC patients with high expression of TRPM7 suggested deeper tumor infiltration, positive lymph node metastasis, distant metastasis, and advanced clinical stage. In addition, TRPM7 was also overexpressed in CRC cell lines. Downregulated TRPM7 in vitro suppressed CRC cell proliferation, migration, and invasion, as well as triggered cell cycle arrest at the G0/G1 phase, reduced the S phase, and promoted apoptosis. Importantly, decreased TRPM7 in CRC cells reversed the epithelial-mesenchymal transition (EMT) status, accompanied by downregulation of N-cadherin and upregulation of E-cadherin. Our study indicated that the expression of TRPM7 was positively correlated with tumor infiltration, lymph node metastasis, distant metastasis and clinical stage of CRC. Besides, decreased TRPM7 in vitro inhibited CRC cell proliferation, migration and invasion by modulating EMT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call