Abstract
Ca2+ itself or Ca2+-dependent signaling pathways play fundamental roles in various cellular processes from cell growth to death. The most representative example can be found in skeletal muscle cells where a well-timed and adequate supply of Ca2+ is required for coordinated Ca2+-dependent skeletal muscle functions, such as the interactions of contractile proteins during contraction. Intracellular Ca2+ movements between the cytosol and sarcoplasmic reticulum (SR) are strictly regulated to maintain the appropriate Ca2+ supply in skeletal muscle cells. Added to intracellular Ca2+ movements, the contribution of extracellular Ca2+ entry to skeletal muscle functions and its significance have been continuously studied since the early 1990s. Here, studies on the roles of channel proteins that mediate extracellular Ca2+ entry into skeletal muscle cells using skeletal myoblasts, myotubes, fibers, tissue, or skeletal muscle-originated cell lines are reviewed with special attention to the proposed functions of transient receptor potential canonical proteins (TRPCs) as store-operated Ca2+ entry (SOCE) channels under normal conditions and the potential abnormal properties of TRPCs in muscle diseases such as Duchenne muscular dystrophy (DMD).
Highlights
Regarding skeletal muscle, intracellular Ca2+ from the sarcoplasmic reticulum (SR) has been thought to be the only Ca2+ source for excitation-contraction (EC) coupling during skeletal muscle contraction [1,2,3,4,5,6]
Regarding the case of the transient receptor potential canonical proteins (TRPCs) subfamily, TRPC1, TRPC3, TRPC4 and TRPC6 expression has mainly been found in skeletal muscle (TRPC2 is a pseudogene in humans) [38,53,61,74,110,111,112]
TRPC3 is another important mediator of the Ca2+ supply in the differentiation processes of skeletal muscle and Ca2+ entry is a crucial step in the beginning of the skeletal muscle differentiation processes
Summary
Intracellular Ca2+ from the SR (similar to the ER in the other types of cells) has been thought to be the only Ca2+ source for excitation-contraction (EC) coupling during skeletal muscle contraction [1,2,3,4,5,6]. Upon Ca2+ depletion from the ER or SR, STIM (stromal interaction molecule, which is an ER Ca2+ sensor) self-oligomerizes and activates SOCE by binding to Ca2+ entry channels in the plasma membrane (usually Orai in many cell types) [22,23,24,25,26,27]. Concerning skeletal muscle cells, STIM-dependent SOCE-mediating channels are divided into two groups: Orai channels (main players) and transient receptor potential canonical channels (TRPCs, emerging players) [8,13,15,30,31,32,33,34,35,36,37,38]. The properties of Orai and the TRPCs that are known to be expressed in skeletal muscle cells and their functions are discussed below
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.