Abstract
Background/Aims: To detect the expression of the TRPC3 channel protein in the tissues of women experiencing preterm labor and investigate its interaction with T lymphocytes, providing a theoretical basis for the clinical prevention of threatened preterm labor and the development of drug-targeted therapy. Methods: Forty-seven women experiencing preterm labor and 47 women experiencing normal full-term labor were included in this study. All included women underwent delivery via cesarean section; uterine samples were obtained at delivery. The expression of TRPC3 in uterine tissue was detected by immunohistochemistry, real-time quantitative reverse transcription-PCR, and western blot assay. Activation of T lymphocytes in peripheral blood and uterine tissue were detected by flow cytometry. A TRPC3<sup>-/-</sup> mouse model of inflammation-induced preterm labor was established; expression of TRPC3, Cav3.1, and Cav3.2 were analyzed in mouse uterine tissue. Activation of T lymphocytes in female mouse and human peripheral blood samples was determined using flow cytometry. Results: In women experiencing preterm labor, expression of TRPC3 and the Cav3.1 and Cav3.2 proteins was significantly increased; in addition, the percentage of CD3<sup>+</sup>, CD4<sup>+</sup>, and CD8<sup>+</sup> T cells in peripheral blood was significantly decreased. TRPC3 knockout significantly delayed the occurrence of preterm labor in mice. The muscle tension of ex vivo uterine strips was lower, Cav3.1 and Cav3.2 protein expression was lower, and the percentage of CD8<sup>+</sup> T lymphocytes was significantly increased in wild-type mice subjected to an inflammation-induced preterm labor than in wild-type mice experiencing normal full-term labor. Conclusion: TRPC3 is closely related to the initiation of labor. TRPC3 relies on Cav3.1 and Cav3.2 proteins to inhibit inflammation-induced preterm labor by inhibiting the activation of T cells, in particular CD8<sup>+</sup> T lymphocytes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.