Abstract

The transient receptor potential cation (TRPC) channels are widely expressed in nervous system but their functions remain largely unclear. Here, we found that TRPC1 deletion did not affect learning and memory in physiological conditions, while it aggravated learning and memory deficits induced by amyloid-β (Aβ), the major component of the senile plaques observed in the brains of Alzheimer's disease (AD). Further studies demonstrated that TRPC1 deletion did not affect cell apoptosis in physiological condition, but it exacerbated the Aβ-induced cell death in mouse hippocampus. Moreover, the level of TRPC1 was decreased in AD cell and mouse models, and upregulation of TRPC1 decreased Aβ levels with attenuation of apoptosis in the cells stably overexpressing amyloid-β protein precursor (AβPP). Finally, the transmembrane domain of TRPC1 could bind to AβPP and thus decreased Aβ production. These findings indicate that loss of TRPC1 exacerbates Aβ-induced memory deficit and cell apoptosis, though it does not impair cognitive function or induce cell death in physiological conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.