Abstract
Transient receptor potential canonical 1 (TRPC1), a widely expressed calcium (Ca(2+))-permeable channel, is potentially involved in the pathogenesis of Duchenne muscular dystrophy (DMD). Ca(2+) influx through stretch-activated channels, possibly formed by TRPC1, induces muscle-cell damage in the mdx mouse, an animal model of DMD. In this study, we showed that TRPC1, caveolin-3 and Src-kinase protein levels are increased in mdx muscle compared with wild type. TRPC1 and caveolin-3 colocalised and co-immunoprecipitated. Direct binding of TRPC1-CFP to caveolin-3-YFP was confirmed in C2 myoblasts by fluorescence energy resonance transfer (FRET). Caveolin-3-YFP targeted TRPC1-CFP to the plasma membrane. Hydrogen peroxide, a reactive oxygen species (ROS), increased Src activity and enhanced Ca(2+) influx, but only in C2 myoblasts co-expressing TRPC1 and caveolin-3. In mdx muscle, Tiron, a ROS scavenger, and PP2, a Src inhibitor, reduced stretch-induced Ca(2+) entry and increased force recovery. Because ROS production is increased in mdx/DMD, these results suggest that a ROS-Src-TRPC1/caveolin-3 pathway contributes to the pathogenesis of mdx/DMD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.