Abstract
Endothelial dysfunction, characterised by impaired nitric oxide (NO) bioavailability, arises in response to a variety of cardiovascular risk factors and precedes atherosclerosis. NO is produced by tight regulation of endothelial nitric oxide synthase (eNOS) activity in response to vasodilatory stimuli. This regulation of eNOS is mediated in part by store-operated calcium entry (SOCE). We hypothesized that both ATP- and flow-induced eNOS activation are regulated by SOCE derived from Orai1 channels and members of the transient receptor potential canonical (TRPC) channel family. Bovine aortic endothelial cells (BAECs) were pre-treated with pharmacological inhibitors of TRPC channels and Orai1 to examine their effect on calcium signaling and eNOS activation in response to flow and ATP. The peak and sustained ATP-induced calcium signal and the resulting eNOS activation were attenuated by inhibition of TRPC3, which we found to be store operated. TRPC4 blockade reduced the transient peak in calcium concentration following ATP stimulation, but did not significantly reduce eNOS activity. Simultaneous TRPC3 & 4 inhibition reduced flow-induced NO production via alterations in phosphorylation-mediated eNOS activity. Inhibition of TRPC1/6 or Orai1 failed to lower ATP-induced calcium entry or eNOS activation. Our results suggest that TRPC3 is a store-operated channel in BAECs and is the key regulator of ATP-induced eNOS activation, whereas flow stimulation also recruits TRPC4 into the pathway for the synthesis of NO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.