Abstract

The unscheduled proliferation of cancer cells outside their natural niches subjects the cells to multiple insults, such as metabolic aberrations, detachment from the extracellular matrix (ECM), hypoxia, and immune cell attacks. Oxidative stress is a hallmark of cancer because these insults can all lead to the accumulation of reactive oxygen species (ROS). However, it remained largely elusive how cancer cells are able to adapt to harsh oxidative environments. Here, we provide evidence that cancer cells co-opt the neuronal ROS-sensing channel TRPA1 to tolerate highly oxidative environments. While TRPA1 is usually expressed at sensory neurons, we found that the channel is also overexpressed in various types of human cancer. TRPA1 does not affect canonical ROS-neutralizing programs but senses ROS and upregulates Ca2+-dependent anti-apoptotic programs that promotes oxidative-stress tolerance. These findings offer a significant advance in our understanding of adaptation mechanisms to oxidative stress, which represents a substantial hurdle that impedes tumor initiation and progression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.