Abstract

We analysed the conformational states of free, tet operator-bound and anhydrotetracycline-bound Tet repressor employing a Trp-scanning approach. The two wild-type Trp residues in Tet repressor were replaced by Tyr or Phe and single Trp residues were introduced at each of the positions 162-173, representing part of an unstructured loop and the N-terminal six residues of alpha-helix 9. All mutants retained in vivo inducibility, but anhydrotetracycline-binding constants were decreased up to 7.5-fold when Trp was in positions 169, 170 and 173. Helical positions (168-173) differed from those in the loop (162-167) in terms of their fluorescence emission maxima, quenching rate constants with acrylamide and anisotropies in the free and tet operator-complexed proteins. Trp fluorescence emission decreased drastically upon atc binding, mainly due to energy transfer. For all proteins, either free, tet operator bound or anhydrtetracycline-bound, mean fluorescence lifetimes were determined to derive quenching rate constants. Solvent-accessible surfaces of the respective Trp side chains were calculated and compared with the quenching rate constants in the anhydrotetracycline-bound complexes. The results support a model, in which residues in the loop become more exposed, whereas residues in alpha-helix 9 become more buried upon the induction of TetR by anhydrotetracycline.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call