Abstract

Troxerutin, a natural flavonoid guards against oxidative stress and apoptosis with a high capability of passing through the blood-brain barrier. Our aim was to investigate the role of troxerutin in experimentally induced retinal neurodegeneration by modulating the interferon-gamma (IFNγ)-extracellular signal-regulated kinases 1/2 (ERK1/2)-CCAAT enhancer-binding protein β (C/EBP-β) signaling pathway. Three groups of rats (10 each group) were included. Group I (control group), group II (rotenone treated group): the rats were injected subcutaneously witha single rotenone dosage of 3 mg/kg repeated every 48 hours for 60 days to trigger retinal neurodegeneration. Group III (troxerutin-treated group): rats received troxerutin (150 mg/kg/day) by oral gavage 1 hour before rotenone administration. A real-time polymerase chain reaction technique was applied to measure messenger RNA (mRNA) levels of retinal C/EBP-β. Enzyme-linked immunosorbent assay technique was utilized to assay tumor necrosis factor-α (TNF-α), IFNγ, and ERK1/2 levels. Finally, reactive oxygen species (ROS), as well as carbonylated protein (CP) levels, were assessed spectrophotometrically. Improved retinal neurodegeneration by downregulation of C/EBP-β mRNA gene expression, also caused a significant reduction of TNF-α, IFNγ, ERK1/2 as well as ROS and CP levels compared with the diseased group. These findings could hold promise for the usage of troxerutin as a protective agent against rotenone-induced retinal neurodegeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call