Abstract
Chronic network conditions are caused by performance impairing events that occur intermittently over an extended period of time. Such conditions can cause repeated performance degradation to customers, and sometimes can even turn into serious hard failures. It is therefore critical to troubleshoot and repair chronic network conditions in a timely fashion in order to ensure high reliability and performance in large IP networks. Today, troubleshooting chronic conditions is often performed manually, making it a tedious, time-consuming and error-prone process.In this paper, we present NICE (Network-wide Information Correlation and Exploration), a novel infrastructure that enables the troubleshooting of chronic network conditions by detecting and analyzing statistical correlations across multiple data sources. NICE uses a novel circular permutation test to determine the statistical significance of correlation. It also allows flexible analysis at various spatial granularity (e.g., link, router, network level, etc.). We validate NICE using real measurement data collected at a tier-1 ISP network. The results are quite positive. We then apply NICE to troubleshoot real network issues in the tier-1 ISP network. In all three case studies conducted so far, NICE successfully uncovers previously unknown chronic network conditions, resulting in improved network operations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.