Abstract

This paper focuses on the temporal discretization of the Langevin dynamics, and on different resulting numerical integration schemes. Using a method based on the exponentiation of time dependent operators, we carefully derive a numerical scheme for the Langevin dynamics, which we found equivalent to the proposal of Ermak and Buckholtz [J. Comput. Phys. 35, 169 (1980)] and not simply to the stochastic version of the velocity-Verlet algorithm. However, we checked on numerical simulations that both algorithms give similar results, and share the same "weak order two" accuracy. We then apply the same strategy to derive and test two numerical schemes for the dissipative particle dynamics. The first one of them was found to compare well, in terms of speed and accuracy, with the best currently available algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.