Abstract

Riluzole, approved to manage amyotrophic lateral sclerosis, is mechanistically unique among glutamate-based therapeutics because it reduces glutamate transmission through a dual mechanism (i.e., reduces glutamate release and enhances glutamate reuptake). The profile of riluzole is favorable for normalizing glutamatergic dysregulation that perpetuates methamphetamine (METH) dependence, but pharmacokinetic and metabolic liabilities hinder repurposing. To mitigate these limitations, we synthesized troriluzole (TRLZ), a third-generation prodrug of riluzole, and tested the hypothesis that TRLZ inhibits METH hyperlocomotion and conditioned place preference (CPP) and normalizes METH-induced changes in mesolimbic glutamate biomarkers. TRLZ (8, 16 mg/kg) reduced hyperlocomotion caused by METH (1 mg/kg) without affecting spontaneous activity. TRLZ (1, 4, 8, 16 mg/kg) administered during METH conditioning (0.5 mg/kg x 4 d) inhibited development of METH place preference, and TRLZ (16 mg/kg) administered after METH conditioning reduced expression of CPP. In rats with established METH place preference, TRLZ (16 mg/kg) accelerated extinction of CPP. In cellular studies, chronic METH enhanced mRNA levels of glutamate carboxypeptidase II (GCPII) in the ventral tegmental area (VTA) and prefrontal cortex (PFC). Repeated METH also caused enhancement of GCPII protein levels in the VTA that was prevented by TRLZ (16 mg/kg). TRLZ (16 mg/kg) administered during chronic METH did not affect brain or plasma levels of METH. These results indicate that TRLZ, already in clinical trials for cerebellar ataxia, reduces development, expression and maintenance of METH CPP. Moreover, normalization of METH-induced GCPII levels in mesolimbic substrates by TRLZ points toward studying GCPII as a therapeutic target of TRLZ.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call