Abstract

An airborne near infrared differential absorption lidar (DIAL) has been completed for meteorological applications. This system is based on a Nd:YAG pumped narrow-band tunable dye laser for both the on- and off-line measurements. Performing H<SUB>2</SUB>O measurements within and above the planetary boundary layer (PBL) up to an altitude of 4 km, it successfully participated in the European Field Experiment on Desertification Threatened Areas (EFEDA '91) conducted in Spain in the summer of 1991. Data processing of the lidar signals provides range resolved horizontal and vertical water vapor profiles, horizontal power spectra of turbulence, and aerosol backscattering profiles. Water vapor profiles are being calculated using gliding averages of single lidar returns. Typical horizontal resolutions range from 1.3 to 3 km with vertical resolutions varying from 300 to 600 m, depending on the signal-to-noise ratio, in order to meet a 5 to 10% accuracy. The systematic errors, however, are estimated to be around 6%. The vertical water vapor profiles agree well with radiosonde measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.