Abstract

AbstractIn response to global warming, ozone is predicted to increase aloft due to stratospheric cooling but decrease in the tropical lower stratosphere. The ozone reductions have been primarily attributed to a strengthening Brewer‐Dobson circulation, which upwells ozone‐poor air. Yet, this paper finds that strengthening upwelling only explains part of the reduction. The reduction is also driven by tropospheric expansion under global warming, which erodes the ozone layer from below, the low ozone anomalies from which are advected upwards. Strengthening upwelling and tropospheric expansion are correlated under global warming, making it challenging to disentangle their relative contributions. Therefore, chemistry‐climate model output is used to validate an idealized model of ozone photochemistry and transport with a tropopause lower boundary condition. In our idealized decomposition, strengthening upwelling and tropospheric expansion both contribute at leading order to reducing tropical ozone. Tropospheric expansion drives bottom‐heavy reductions in ozone, which decay in magnitude into the mid‐stratosphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.