Abstract
Satellite laser ranging (SLR) constitutes a fundamental space geodetic technique providing global geodetic parameters, such as geocenter coordinates, Earth rotation parameters, and low-degree gravity field coefficients. The tropospheric delay correction is one of the crucial corrections that have to be taken into account when processing SLR data. Current conventional models of the troposphere delays assume a full symmetry of the atmosphere above SLR stations. Neglecting horizontal gradients in SLR solutions introduces a systematic error in SLR products, especially for the observations at low elevation angles, and leads to a deterioration of the consistency between SLR and other space geodetic techniques, such as global navigational satellite systems and very-long-baseline interferometry. We derive new mapping function coefficients, as well as first- and second-order horizontal gradients, all of which are based on numerical weather models, in order to properly consider the azimuthal asymmetry in SLR solutions. We test the enhanced mapping function and horizontal gradients on the solutions based on 11 years of SLR observations to LAGEOS-1/2 satellites and 1 year of SLR observations to Sentinel-3A. The consideration of azimuthal asymmetry of the atmosphere above the SLR stations has a systematic effect on SLR-derived products, such as station and geocenter coordinates and pole coordinates. Horizontal gradients in SLR solutions improve the consistency between SLR-derived pole coordinates and the combined IERS-C04 series by means of reducing the offset for the X and Y pole coordinates by 20 {upmu }mathrm{as}. The second-order horizontal gradients are negligible in SLR solutions; thus, including first-order gradients is sufficient for SLR solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.