Abstract

Troponin has been prepared from the asynchronous flight muscle of Lethocerus (water bug) taking special care to prevent proteolysis. The regulatory complex contained tropomyosin and troponin components. The troponin components were Tn-C (18,000 M r), Tn-T (apparent M r 53,000) and a heavy component, Tn-H (apparent M r 80,000). The troponin was tightly bound to tropomyosin and could not be dissociated from it in non-denaturing conditions. A complex of Tn-T, Tn-H and tropomyosin inhibited actomyosin ATPase activity and the inhibition was relieved by Tn-C from vertebrate striated muscle in the presence of Ca 2+. However, unlike vertebrate Tn-I, Tn-H by itself was not inhibitory. Monoclonal antibodies were obtained to Tn-T and Tn-H. Antibody to Tn-T was used to screen an expression library of Drosophila cDNA cloned in lambda phage. The sequence of cDNA coding for the protein was determined and hence the amino acid sequence. The Drosophila protein has a sequence similar to that of vertebrate skeletal and cardiac Tn-T. The sequence extends beyond the carboxyl end of the vertebrate sequences, and the last 40 residues are acidic. Part of the sequence of Drosophila Tn-T is homologous to the carboxyl end of the Drosophila myosin light chain MLC-2 and one anti-Tn-T antibody cross-reacted with the light chain. Lethocerus Tn-H is related to the large tropomyosins of Drosophila flight muscle, for which the amino acid sequence is known, since antibodies that recognize this component also recognize the large tropomyosins. Tn-H is easily digested by calpain, suggesting that part of the molecule has an extended configuration. Electron micrographs of negatively stained specimens showed that Lethocerus thin filaments have projections at about 39 nm intervals, which are not seen on thin filaments from vertebrate striated muscle and are probably due to the relatively large troponin complex. Decoration of the thin filaments with myosin subfragment-I in rigor conditions appeared not to be affected by the troponin. The troponin of asynchronous flight muscle lacks the Tn-I component of vertebrate striated muscle. Tn-H occurs only in the flight muscle and may be involved in the activation of this muscle by stretch.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.