Abstract

Previous attempts to prepare tropone-fused carbaporphyrins by reacting peroxides with azuliporphyrins under basic conditions afforded benzocarbaporphyrins instead. In this study, a methoxyazulitripyrrane condensed with a pyrrole dialdehyde in the presence of TFA, followed by oxidation with ferric chloride, to give a tropone-fused carbaporphyrin following a spontaneous demethylation. The porphyrinoid gave a modified UV-vis spectrum showing multiple bands in the Soret region, and the proton NMR spectrum showed that it has a reduced diamagnetic ring current in comparison to other carbaporphyrins. The tropone-fused derivative failed to react with tert-butyl hydroperoxide and potassium hydroxide, demonstrating that this type of structure is not an intermediate in the formation of benzocarbaporphyrins. However, the reaction with silver(I) acetate gave the corresponding silver(III) complex. Condensation of the methoxyazulitripyrrane with 2,5-thiophenedicarbaldehyde gave a related tropone-fused thiacarbaporphyrin together with a methoxythiaazuliporphyrin. Treatment of the carbaporphyrins with DBU resulted in the formation of anionic species, while addition of acid afforded dicationic structures. DFT studies were performed on a series of tautomers, protonated species, and anionic structures related to these tropone-fused carbaporphyrins, and NICS calculations were carried out. These results allowed favorable conjugation pathways to be identified. In addition, these studies predicted that protonation initially occurs on the carbonyl moiety rather than on the expected interior pyrrolenine nitrogen atom.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call