Abstract

Cardiac muscle contraction is dependent upon a cooperative interaction between thick and thin filament sarcomeric proteins. Tropomyosin (TM), an essential thin filament protein, interacts with actin and the troponin complex to regulate contractile activity. During muscle contraction, an increase of calcium (Ca 2+) in the myofilament space promotes binding of Ca 2+ to troponin C, which alters the conformational state of TM and facilitates acto-myosin interactions. By coupling classic genetic approaches with recent developments in transgenic animal model systems, new insights have been provided on the functional role of TM isoforms in both normal and disease states. The focus of this article is to review the current state of knowledge on TM structure and function, with a particular emphasis on myocardial expression in transgenic mouse model systems . (Trends Cardiovasc Med 1997;7:124–128). © 1997, Elsevier Science Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.