Abstract

Tropomyosin is an actin-binding cytoskeletal protein which has been extensively characterized in a variety of cell types and tissues, with the exception of very early developmental stages during which cellular polarization first occurs. We have identified five polypeptides in mouse preimplantation conceptuses which show many of the characteristics of tropomyosin. They form the major portion of the heat-stable cytoskeletal protein fraction of blastomeres and have the characteristic isoelectric and SDS–PAGE migration characteristics on 1-D and 2-D gels. All five polypeptides were synthesized in late 2- and 4-cell, and all 8-cell stages, with three of the five polypeptides showing lower synthetic levels in fertilized eggs and early 2-cell conceptuses. These heat-stable proteins showed specific differences from proteins isolated from mouse 3T3 fibroblasts by the same method, namely higherMrisoforms were not represented, also some of the isoforms can be labeled by incorporation of [14C]proline. The cellular distribution of tropomyosin in early stage conceptuses was examined using monoclonal and affinity-purified polyclonal antibodies. Tropomyosin becomes associated both with the blastomere cortex postfertilization and with the cleavage furrow during cytokinesis. The interphase cortical association is uniform until the 8-cell stage, when tropomyosin becomes associated with the developing apical pole and is excluded from the basolateral cortex. This polar localization is inherited along with the pole at the 8- to 16-cell division, but experiments in which cell division is artificially prolonged show that tropomyosin localization does not represent a permanent marking of the pole. We conclude that the early mouse conceptus contains a unique and specific set of tropomyosins which respond to polarizing signals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.