Abstract

Tropoelastin, the precursor of elastin, undergoes a rapid monomer to multimer association in an inverse temperature transition. This association culminates in the rapid formation of stable, optically distinct droplets of tropoelastin. Light scattering and microscope measurements reveal that these droplets are 2-6 microm in diameter. Scanning electron microscopy confirms that the droplets are spherical. Three-dimensional confocal image stacks based on the autofluorescence of tropoelastin reveal that droplets are loaded with hydrated tropoelastin. Droplets are viable intermediates in synthetic elastin macroassembly. Dense clusters of aggregated droplets and partially formed fibers develop when droplets are incubated in the presence of a lysyl oxidase. Lysine-reacting chemical and enzyme-assisted cross-linking conditions generate cross-linked beads due to interactions between multiple, surface-exposed lysine epsilon-amino groups. Droplets represent an efficient mechanism for the bolus delivery during elastogenesis of quantized packages of preaccreted tropoelastin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.