Abstract

To explore the role and function of stromal cell-derived factor-1 (SDF-1) in stem cells migrating into injured brain area. Rat-derived nerve stem cells (NSCs) were isolated and cultured routinely. Transwell system was used to observe the migration ability of NSCs into injured nerve cells. Immunocytochemistry was used to explore the expression of chemotactic factor receptor-4 (CXCR-4) in NSCs. In vivo, we applied immunofluorescence technique to observe the migration of NSCs into injured brain area. Immunofluorescence technique and Western blotting were used to test expression level of SDF-1. After AMD3100 (a special chemical blocker) blocking CXCR-4, the migration ability of NSCs was tested in vivo and in vitro, respectively. NSCs displayed specific tropism for injured nerve cells or traumatic brain area in vivo and in vitro. The expression level of SDF-1 in traumatic brain area increased remarkably and the expression level of CXCR-4 in the NSCs increased simultaneously. After AMD3100 blocking the expression of CXCR-4, the migration ability of NSCs decreased significantly both in vivo and in vitro. SDF-1 may play a key role in stem cells migrating into injured brain area through specially combining with CXCR-4.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.