Abstract

A semilinear relation $S \subseteq {\mathbb {Q}}^{n}$ is max-closed if it is preserved by taking the componentwise maximum. The constraint satisfaction problem for max-closed semilinear constraints is at least as hard as determining the winner in Mean Payoff Games, a notorious problem of open computational complexity. Mean Payoff Games are known to be in N P ∩ c o − N P, which is not known for max-closed semilinear constraints. Semilinear relations that are max-closed and additionally closed under translations have been called tropically convex in the literature. One of our main results is a new duality for open tropically convex relations, which puts the CSP for tropically convex semilinear constraints in general into N P ∩ c o − N P. This extends the corresponding complexity result for scheduling under and-or precedence constraints, or equivalently the max-atoms problem. To this end, we present a characterization of max-closed semilinear relations in terms of syntactically restricted first-order logic, and another characterization in terms of a finite set of relations L that allow primitive positive definitions of all other relations in the class. We also present a subclass of max-closed constraints where the CSP is in P; this class generalizes the class of max-closed constraints over finite domains, and the feasibility problem for max-closed linear inequalities. Finally, we show that the class of max-closed semilinear constraints is maximal in the sense that as soon as a single relation that is not max-closed is added to L, the CSP becomes N P-hard.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call