Abstract
The atmospheric variability in the equatorial regions is analysed in the Earth System Model pre-industrial simulation done at IPSL in the framework of CMIP5. We find that the model has an interannual variability of about the right amplitude and temporal scale, when compared to the El-Nino Southern Oscillation (ENSO), but that is too confined to the western Pacific. At the intra-seasonal periods, the model variability lacks of large-scale organisation, and only produces one characteristic Madden-Julian Oscillation every 10 winters typically. At shorter time-scales and in the troposphere, the model has Rossby and Kelvin Convectively Coupled Equatorial Waves (CCEWs), but underestimates the Kelvin CCEWs signal on OLR. In the model stratosphere, a composite analysis shows that the Temperature and velocities fluctuations due to the Kelvin waves are quite realistic. In the model nevertheless, the stratospheric waves are less related to the convection than in the observations, suggesting that their forcing by the midlatitudes plays a larger role. Still in the model, the Kelvin waves are not predominantly occurring during the life cycle of the tropospheric Kelvin CCEWs, a behaviour that we find to be dominant in the observations. The composite analysis is also used to illustrate how the waves modify the zonal mean-flow, and to show that the model Kelvin waves are too weak in this respect. This illustrates how a model can have a reasonable Kelvin waves signal on the velocities and temperature, but can at the same time underestimate their amplitude to modify the mean flow. We also use this very long simulation to establish that in the model, the stratospheric equatorial waves are significantly affected by ENSO, hence supporting the idea that the ENSO can have an influence on the Quasi-Biennial Oscillation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.