Abstract

Information about tree species plays a pivotal role in sustainable forest management. Light detection and ranging (LiDAR) technology has demonstrated its potential to obtain species information using the structural features of trees. Several studies have explored the structural properties of boreal or temperate trees from terrestrial laser scanning (TLS) data and applied them to species classification, but the study of structural properties of tropical trees for species classification is rare. Compared to conventional static TLS, handheld laser scanning (HLS) is able to effectively capture point clouds of an individual tree with flexible movability. Therefore, in this study, we characterized the structural features of tropical species from HLS data as 23 LiDAR structural parameters, involving 6 branch, 11 crown and 6 entire tree parameters, and used these parameters to classify the species via 5 machine-learning (ML) models, respectively. The performance of each parameter was further evaluated and compared. Classification results showed that the employed parameters can achieve a classification accuracy of 84.09% using the support vector machine with a polynomial kernel. The evaluation of parameters indicated that it is insufficient to classify four species with only one and two parameters, but ten parameters were recommended in order to achieve satisfactory accuracy. The combination of different types of parameters, such as branch and crown parameters, can significantly improve classification accuracy. Finally, five sets of optimal parameters were suggested according to their importance and performance. This study also showed that the time- and cost-efficient HLS instrument could be a promising tool for tree-structure-related studies, such as structural parameter estimation, species classification, forest inventory, as well as sustainable tree management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.