Abstract
Tropicalization is a procedure that assigns polyhedral complexes to algebraic subvarieties of a torus. If one fixes a weighted polyhedral complex, one may study the set of all subvarieties of a toric variety that have that complex as their tropicalization. This gives a tropical realization moduli functor. We use rigid analytic geometry and the combinatorics of Chow complexes as studied by Alex Fink to prove that when the ambient toric variety is quasiprojective, the moduli functor is represented by a rigid space. As an application, we show that if a polyhedral complex is the tropicalization of a formal family of varieties then it is the tropicalization of an algebraic family of varieties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.