Abstract

AbstractClassifying tropical deep convective systems by the mesoscale distribution of their cloud properties and sorting matching precipitation measurements over an 11-yr period reveals that the whole distribution of instantaneous precipitation intensity and daily average accumulation rate is composed of (at least) two separate distributions representing distinctly different types of deep convection associated with different meteorological conditions (the distributions of non-deep-convective situations are also shown for completeness). The two types of deep convection produce very different precipitation intensities and occur with very different frequencies of occurrence. Several previous studies have shown that the interaction of the large-scale tropical circulation with deep convection causes switching between these two types, leading to a substantial increase of precipitation. In particular, the extreme portion of the tropical precipitation intensity distribution, above 2 mm h−1, is produced by 40% of the larger, longer-lived mesoscale-organized type of convection with only about 10% of the ordinary convection occurrences producing such intensities. When average precipitation accumulation rates are considered, essentially all of the values above 2 mm h−1 are produced by the mesoscale systems. Yet today’s atmospheric models do not represent mesoscale-organized deep convective systems that are generally larger than current-day circulation model grid cell sizes but smaller than the resolved dynamical scales and last longer than the typical physics time steps. Thus, model-based arguments for how the extreme part of the tropical precipitation distribution might change in a warming climate are suspect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.