Abstract

Extensive tropical peatlands are located in the Malaysian and Indonesian lowlands, particularly in Borneo, Sumatra, West Papua, and Peninsular Malaysia. In an undisturbed condition, these peatlands make a significant contribution to terrestrial carbon storage, both in terms of their aboveground biomass (peat swamp forest) and thick deposits of peat. Occasional forest fires, including peatland fires, have occurred in Southeast Asia over several millennia but, in recent years, they have become a more regular feature. The most severe fires have been linked with the El Nino phase of ENSO which causes extended periods of drought, particularly across the peatland areas of southern Sumatra and southern Kalimantan. During the last 20 years, rapid land use change, exacerbated by climatic variability, has led to an increase in fire frequency, as the remaining peat swamp forests come under pressure from increased illegal logging, development for plantations and agriculture-based settlement, and, where economic development has failed, land abandonment. A case study of fire occurrence in Borneo illustrates that peat swamp forests are much more prone to fire than any other forest type, largely as a result of the high pressure being put on these last remaining forested lands. From studies in central Kalimantan (southern Borneo), we demonstrate the relationships between peat drainage, vegetation change, and increased fire frequency, including the role that peat combustion and subsidence play in an increased incidence of surface flooding. Tropical peatland fires, and the changes in vegetation that they bring about, have significant impacts on the atmosphere, the carbon cycle, and various ecosystem services; they also cause wide-ranging social and economic impacts. Fires on peatlands usually affect both the surface vegetation and the underlying peat layer and, as a result, they release much larger amounts of C02 into the atmosphere than forest fires on mineral soils. In 1997, peatland fires in Indonesia resulted in the release of between 0.81 Gt and 2.57Gt of carbon into the atmosphere, equivalent to 13% to 40% of mean annual global carbon emissions from fossil fuels, and over the last ten years a conservative estimate of total carbon emissions from peatland fires in Southeast Asia is of the order of 2Gt to 3Gt. Future climate changes may place further pressure on the tropical peatland ecosystem and are likely to lead to enhanced carbon emissions from both peat degradation and fire.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call