Abstract
We consider a project that consists of a set of activities performed in parallel under constraints on their start and finish times, including start-finish precedence relationships, release start times, release end times, and deadlines. The problems of interest are to decide on the optimal schedule of the activities to minimize both the maximum flow-time over all activities, and the project makespan. We formulate these problems as bi-objective optimization problems in the framework of tropical mathematics which investigates the theory and applications of algebraic systems with idempotent operations and has various applications in management science and operations research. Then, the use of methods and techniques of tropical optimization allows to derive complete Pareto-optimal solutions of the problems in a direct explicit form ready for further analysis and straightforward computation. We discuss the computational complexity of the solution and give illustrative examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.