Abstract
We study tree metrics that can be realized as a mixture of two star tree metrics. We prove that the only trees admitting such a decomposition are the ones coming from a tree with at most one internal edge, and whose weights satisfy certain linear inequalities. We also characterize the fibers of the corresponding mixture map. In addition, we discuss the general framework of tropical secant varieties and we interpret our results within this setting. Finally, we show that the set of tree metric ranks of metrics on fixed taxa is unbounded.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.