Abstract

Half of Borneo's forest has been logged and oil palm plantations have replaced millions of hectares of forest since the 1970's. While this extensive land-use change has been shown to reduce species richness across landscapes, there is limited current knowledge on how deforestation affects the spatial arrangement of ecological communities. Identifying responses of beta-diversity to land-use change may reveal processes which could mitigate total biodiversity loss. We sampled weevils (superfamily: Curculionoidea) at multiple spatial scales across a land-use gradient at the Stability of Altered Forest Ecosystems (SAFE) Project in Sabah, Malaysia, in 2011–2012. We caught 160 taxa of weevil and calculated the response of alpha-diversity (1-ha scale) and beta-diversity (10-, 100-, and 1000-ha scales) to disturbance. Alpha-diversity of weevils was greatest in unlogged forest but landscape-level beta-diversity (100- and 1000-ha scale) was maintained across logged and unlogged due to high rates of spatial turnover. Turnover at smallest spatial scales (10-ha) in unlogged forest was highest in rough, flat terrain but smooth, sloping terrain had highest turnover in logged forest. Logging of flat terrain at small spatial scales has potential to decrease beta-diversity at greater scales. Beta-diversity at landscape-level in oil palm plantation remained high but was propagated by abundance shifts of few species instead of spatial turnover of many species. High temporal beta-diversity in unlogged forest was evident through periodic fluxes in abundance of many weevil species. We conclude that unlogged forest is irreplaceable for high beetle biodiversity but increased spatial turnover in some terrains may help conserve beetle communities in heavily-degraded landscapes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call