Abstract

Climate-mediated changes to biotic interactions have the potential to fundamentally alter global ecosystems. However, the capacity for novel interactions to drive or maintain transitions in ecosystem states remains unresolved. We examined temperate reefs that recently underwent complete seaweed canopy loss and tested whether a concurrent increase in tropical herbivores could be maintaining the current canopy-free state. Turf-grazing herbivorous fishes increased in biomass and diversity, and displayed feeding rates comparable to global coral reefs. Canopy-browsing herbivores displayed high (~ 10,000 g 100 m(-2) ) and stable biomass between 2006 and 2013. Tropical browsers had the highest abundance in 2013 and displayed feeding rates approximately three times higher than previously observed on coral reefs. These observations suggest that tropical herbivores are maintaining previously kelp-dominated temperate reefs in an alternate canopy-free state by grazing turfs and preventing kelp reestablishment. This remarkable ecosystem highlights the sensitivity of biotic interactions and ecosystem stability to warming and extreme disturbance events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.