Abstract

Monitoring disturbances in tropical forests is important for assessing disturbance-related greenhouse gas emissions and the ability of forests to sequester carbon, and for formulating strategies for sustainable forest management. Thanks to a long-term observation history, large spatial coverage, and support from powerful cloud platforms such as Google Earth Engine (GEE), remote sensing is increasingly used to detect forest disturbances. In this study, three types of forest disturbances (abrupt, gradual, and multiple) were identified since the late 1980s on Hainan Island, the largest tropical island in China, using an improved LandTrendr algorithm and a dense time series of Landsat and Sentinel-2 satellite images on the GEE cloud platform. Results show that: (1) the algorithm identified forest disturbances with high accuracy, with the R2 for abrupt and gradual disturbance detection reaching 0.92 and 0.83, respectively; (2) the total area in which forest disturbances occurred on Hainan Island over the past 30 years accounted for 10.84% (2.33 × 105 hm2 in total area, at 0.35% per year) of the total forest area in 2020 and peaked around 2005; (3) the areas of abrupt, gradual, and multiple disturbances were 1.21 × 105 hm2, 9.96 × 104 hm2, and 1.25 × 104 hm2, accounting for 51.93%, 42.75%, and 5.32% of the total disturbed area, respectively; and (4) most forest disturbance occurred in low-lying (<600 m elevation accounts for 97.42%) and gentle (<25° slope accounts for 94.42%) regions, and were mainly caused by the rapid expansion of rubber, eucalyptus, and tropical fruit plantations and natural disasters such as typhoons and droughts. The resulting algorithm and data products provide effective support for assessments of such things as tropical forest productivity and carbon storage on Hainan Island.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.