Abstract
Let Dk,l(m,n) be the set of all the integer points in the transportation polytope of kn×ln matrices with row sums lm and column sums km. In this paper we find the sharp lower bound on the tropical determinant over the set Dk,l(m,n). This integer piecewise linear programming problem in arbitrary dimension turns out to be equivalent to an integer non-linear (in fact, quadratic) optimization problem in dimension two. We also compute the sharp upper bound on a modification of the tropical determinant, where the maximum over all the transversals in a matrix is replaced with the minimum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.