Abstract
ABSTRACT. A new convection parameterization scheme proposed by Emanuel (1991) is used to simulate the evolution of tropical cyclone. The numerical model used for this study is a 19 level axi-symmetric primitive equation, hydrostatic model in a z co-ordinate system. The vertical domain ranges from 0 to 18 km and the horizontal domain ranges upto 3114 km with a resolution of 20 km. in the central 400 km radius and with increasing radial distance thereafter.
 The evolution of an initially balanced vortex with an initial strength of 9 m/sec is studied. It is shown that Emanuel's convection scheme is successful in simulating the development of the initial vortex into a mature, intense cyclonic storm. At the mature stage, a minimum surface pressure of 930 hPa is attained with the associated low level maximum tangential wind speed of 70 m/sec. The simulated circulation features at the mature stage show the formation of an intense cyclone.
 
 Two different sensitivity experiments were performed. A set of experiments with the variation of sea surface temperature (SST) from 300.5° to 302° K in steps of 0.5° K have shown that the intensity of model cyclone increases with the increase of SST. Another set of experiments with variation of latitude has shown that the cyclonic storm is more intense at lower latitudes.
 
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.