Abstract
AbstractThis paper investigates the relationship between the growth of the 34‐kt wind radius (R34) of tropical cyclones (TCs) and their fullness using best‐track data from 2001 to 2020. The storms were categorized into four groups based on a fullness scale: FS1 (fullness ≤ 0.4), FS2 (0.4 < fullness ≤ 0.6), FS3 (0.6 < fullness ≤ 0.8), and FS4 (fullness > 0.8). These groups exhibit unique spatial patterns of very deep convective clouds with infrared brightness temperatures <208 K. The mean R34 growth rates in 24 hr decrease from FS1 to FS4, which is linked to the higher coverage of very deep convection around R34 in storms with lower fullness. This study demonstrates that TC fullness can characterize the spatial distribution of deep convection in storms and serve as a representation of the growth of TC outer region size. These results have implications for understanding the mechanisms behind TC outer size growth.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.