Abstract

The intensity of major storm events generated within the Atlantic Basin is projected to rise with the warming of the oceans, which is likely to exacerbate coastal erosion. Nature-based flood defence has been proposed as a sustainable and effective solution to protect coastlines. However, the ability of natural ecosystems to withstand major storms like tropical hurricanes has yet to be thoroughly tested. Seagrass meadows both stabilise sediment and attenuate waves, providing effective coastal protection services for sandy beaches. To examine the tolerance of Caribbean seagrass meadows to extreme storm events, and to investigate the extent of protection they deliver to beaches, we employed a combination of field surveys, biomechanical measurements and wave modelling simulations. Field surveys of seagrass meadows before and after a direct hit by the category 5 Hurricane Irma documented that established seagrass meadows of Thalassia testudinum remained unaltered after the extreme storm event. The flexible leaves and thalli of seagrass and calcifying macroalgae inhabiting the meadows were shown to sustain the wave forces that they are likely to experience during hurricanes. In addition, the seagrass canopy and the complex biogeomorphic landscape built by the seagrass meadows combine to significantly dissipate extreme wave forces, ensuring that erosion is minimised within sandy beach foreshores. The persistence of the Caribbean seagrass meadows and their coastal protection services during extreme storm events ensures that a stable coastal ecosystem and beach foreshore is maintained in tropical regions.

Highlights

  • The frequency of extreme tropical storm events (Cat. 4 & 5 hurricanes) within the North Atlantic is projected to increase with rising sea surface temperatures (Webster and others 2005; Bender and others 2010; Knutson and others 2010, 2013)

  • Due to the recurrent nature of hurricanes within the Caribbean, native species have had to adapt to the associated extreme hydrodynamic forces in order to survive (Botero and others 2015)

  • T. testudinum-dominated native Caribbean seagrass meadows and their coastal protection services persist during major tropical storms and hurricanes

Read more

Summary

Introduction

The frequency of extreme tropical storm events (Cat. 4 & 5 hurricanes) within the North Atlantic is projected to increase with rising sea surface temperatures (Webster and others 2005; Bender and others 2010; Knutson and others 2010, 2013). Between 1996 and 2005, the estimated hurricane frequency within the Atlantic basin was 40–70% above the long-term mean activity since 1950 (Saunders and Lea 2008). A lack of historical records makes it uncertain whether this increase in frequency is due to warmer sea surface temperatures from global warming or due to the natural multidecadal variability observed within the North Atlantic (Lighthill and others 1994; Klotzbach and Gray 2008; Knutson and others 2013), it is clear that the frequency of more extreme hurricane events is increasing within the Atlantic-Caribbean region (Saunders and Lea 2008). Nature-based flood defence has been proposed as a sustainable and effective solution to protect coastlines (Temmerman and others 2013; Morris and others 2018; James and others 2019); their ability to withstand major storms like tropical hurricanes has yet to be thoroughly tested

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call