Abstract

A major challenge in developing potential treatments for pregnancy complications is minimizing adverse effects to the fetus and mother. Placenta-targeted drug delivery could reduce the risks of drug treatments in pregnancy by targeting tissue where most pregnancy complications originate and decreasing dosages. We previously developed a tool for the targeted delivery of drug-carrying nanoparticles to the placenta using a synthetic placental chondroitin sulfate A-binding peptide (plCSA-BP) derived from the malarial protein VAR2CSA, which binds a distinct type of chondroitin sulfate A (CSA) exclusively expressed by placental trophoblasts. Liposomes are a type of nanoparticle already approved for use in humans by the Food and Drug Administration (FDA) and used successfully for the treatment of a wide range of diseases. Here, we present a detailed method to create plCSA-BP-decorated liposomes that can be used to deliver drugs specifically to placental trophoblasts. Liposomes are first generated by the standard film method and then conjugated to plCSA-BPs using the 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride/N-hydroxysulfosuccinimide (EDC/NHS) bioconjugate technique. This protocol may facilitate bench-to-bedside translation of drug discovery for the treatment of pregnancy disorders by reducing risks of side effects, and enabling rapid and scalable production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call