Abstract

Trophoblast cells are characterized by an invasive behavior into the surrounding uterine tissue. In rodents, an early peri-/endovascular type of invasion exerted by trophoblast giant cells can be distinguished from a late interstitial type carried out by glycogen trophoblast cells. Analysis of the molecular mechanisms of trophoblast invasion has been hampered, however, by the complex temporal and spatial patterns of invasion. We utilized trophoblast stem (TS) cell lines to study trophoblast invasion in vitro and to establish a model that facilitates investigation of this process on the molecular level. Our results showed that trophoblast giant cells that differentiate from TS cells in vitro are capable of penetrating a reconstituted basement membrane matrix. Consequently, invasion rates were increased in various giant cell differentiation-promoting conditions. We also derived TS cell lines that are homozygous for a mutation of the Hand1 transcription factor. The Hand1 −/− TS cells showed reduced levels of giant cell differentiation and exhibited an approximately 50% decrease in invasion rates. In summary, trophoblast giant cells that differentiate from TS cells in vitro recapitulate the invasive capacity of normal trophoblast cells in vivo. The TS cell system is a valuable tool to identify and quantitatively study regulators of trophoblast invasion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.